Ads
related to: derivative word problem examples for math class 8
Search results
Results From The WOW.Com Content Network
e. In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus —the study of the area beneath a curve. [2]
v. t. e. In mathematics, the derivative is a fundamental tool that quantifies the sensitivity of change of a function 's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
In mathematics education, calculus is an abbreviation of both infinitesimal calculus and integral calculus, which denotes courses of elementary mathematical analysis. In Latin, the word calculus means “small pebble”, (the diminutive of calx, meaning "stone"), a meaning which still persists in medicine. Because such pebbles were used for ...
Introduction. The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δ x (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well. A deep result of computational theory is that answering this question is in many ...
The most common way to approach related rates problems is the following: [2] Identify the known variables, including rates of change and the rate of change that is to be found. (Drawing a picture or representation of the problem can help to keep everything in order)
A form of the mean value theorem, where a < ξ < b, can be applied to the first and last integrals of the formula for Δ φ above, resulting in. Dividing by Δ α, letting Δ α → 0, noticing ξ1 → a and ξ2 → b and using the above derivation for yields. This is the general form of the Leibniz integral rule.
for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]