When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...

  3. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    Download as PDF; Printable version; ... Exponentiation for a natural power is defined as ... 4 5 formula 1 10: 100: 1,000: 10,000: 100,000

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value

  5. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 10 3 = 1000 and 104 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers. For instance, 299 792 458 m/s (the speed of light in vacuum, in metres per second ) can be written as 2.997 924 58 × 10 8 m/s and then approximated as 2.998 × 10 8 m/s .

  6. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Visualisation of powers of 10 from one to 1 trillion. In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ...

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though Knuth's up arrow notation ↑ ↑ {\displaystyle \uparrow \uparrow } and the left-exponent x b {\displaystyle {}^{x}b} are common.

  8. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Legendre's formula can be used to prove Kummer's theorem. As one special case, it can be used to prove that if n is a positive integer then 4 divides ( 2 n n ) {\displaystyle {\binom {2n}{n}}} if and only if n is not a power of 2.

  9. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713