Search results
Results From The WOW.Com Content Network
The Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; in fact, they are not possible to write down in closed form. The graphs below are generated using the cascade algorithm, a numeric technique consisting of inverse-transforming [1 0 0 0 0 ... ] an appropriate number of times.
The predict step calculates the wavelet function in the wavelet transform. This is a high-pass filter. The update step calculates the scaling function, which results in a smoother version of the data. As mentioned above, the lifting scheme is an alternative technique for performing the DWT using biorthogonal wavelets.
Both the scaling function (low-pass filter) and the wavelet function (high-pass filter) must be normalised by a factor /. Below are the coefficients for the scaling functions for C6–30. The wavelet coefficients are derived by reversing the order of the scaling function coefficients and then reversing the sign of every second one (i.e. C6 ...
is the negative normalized second derivative of a Gaussian function, i.e., up to scale and normalization, the second Hermite function. It is a special case of the family of continuous wavelets (wavelets used in a continuous wavelet transform) known as Hermitian wavelets. The Ricker wavelet is frequently employed to model seismic data, and as a ...
Download QR code; Print/export ... move to sidebar hide. Scaling function may refer to: Critical exponent § Scaling functions ... Wavelet § Scaling function
Wavelet coefficients can be computed by passing the signal to be decomposed though a series of filters. In the case of 1-D, there are two filters at every level-one low pass for approximation and one high pass for the details. In the multidimensional case, the number of filters at each level depends on the number of tensor product vector spaces.
In the mathematical topic of wavelet theory, the cascade algorithm is a numerical method for calculating function values of the basic scaling and wavelet functions of a discrete wavelet transform using an iterative algorithm. It starts from values on a coarse sequence of sampling points and produces values for successively more densely spaced ...
An illustration and implementation of wavelet packets along with its code in C++ can be found at: Ian Kaplan (March 2002). "The Wavelet Packet Transform". Bearcave. JWave: An implementation in Java for 1-D and 2-D wavelet packets using Haar, Daubechies, Coiflet, and Legendre wavelets.