Search results
Results From The WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise. The substances are listed in alphabetical order.
It is somewhat soluble in water and readily evaporates into the air. Bromoform is the main trihalomethane produced in beachfront salt water swimming pools with concentrations as high as 1.2 ppm (parts per million). Concentrations in freshwater pools are 1000 times lower. [9] Occupational skin exposure limits are set at 0.5 ppm. [10]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Trihalomethanes were the subject of the first drinking water regulations issued after passage of the U.S. Safe Drinking Water Act in 1974. [ 5 ] The EPA limits the total concentration of the four chief constituents ( chloroform , bromoform , bromodichloromethane , and dibromochloromethane ), referred to as total trihalomethanes (TTHM), to 80 ...
In part because of its high polarity, HCl is very soluble in water (and in other polar solvents). Upon contact, H 2 O and HCl combine to form hydronium cations [H 3 O] + and chloride anions Cl − through a reversible chemical reaction: HCl + H 2 O → [H 3 O] + + Cl −. The resulting solution is called hydrochloric acid and is a strong acid.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.