Search results
Results From The WOW.Com Content Network
An example of secretomotor activity can be seen with the lacrimal gland, [1] which secretes the aqueous layer of the tear film. The lacrimal branch of the ophthalmic nerve (itself a branch of trigeminal nerve V1) supplies secretomotor innervation to the lacrimal gland, stimulating its secretion of the aqueous layer.
The cells of the brain include neurons and supportive glial cells. There are more than 86 billion neurons in the brain, and a more or less equal number of other cells. Brain activity is made possible by the interconnections of neurons and their release of neurotransmitters in response to nerve impulses.
After a parotidectomy, the nerves from the Auriculotemporal Nerve that previously innervated the parotid gland can reattach to the sweat glands in the same region. The result is sweating along the cheek with the consumption of foods (Frey's syndrome). Treatment involves the application of an antiperspirant or glycopyrrolate to the cheek ...
Preganglionic parasympathetic fibers to the submandibular ganglion, providing secretomotor innervation to two salivary glands: the submandibular gland and sublingual gland and to the vessels of the tongue, which when stimulated, cause a dilation of blood vessels of the tongue. Right chorda tympani nerve, viewed from lateral side
The SCG provides sympathetic innervation to structures within the head, including the pineal gland, the blood vessels in the cranial muscles and the brain, the choroid plexus, the eyes, the lacrimal glands, the carotid body, the salivary glands, and thyroid gland. [6] The postganglionic axons of the SCG form the internal carotid plexus.
Autonomic nervous system, showing splanchnic nerves in middle, and the vagus nerve as "X" in blue. The heart and organs below in list to right are regarded as viscera. The autonomic nervous system has been classically divided into the sympathetic nervous system and parasympathetic nervous system only (i.e., exclusively motor).
The magnocellular cells in the PVN elaborate and secrete two peptide hormones: oxytocin and vasopressin. These hormones are packaged into large vesicles, which are then transported down the unmyelinated axons of the cells and released from neurosecretory nerve terminals residing in the posterior pituitary gland. [citation needed]
Neurophilosophy – some observations on this type of approach and localization of function; Receptor cell – cells that sense external stimuli and conducted that information to the brain; Multisensory integration – organization of sensation from one's own body and the environment into usable functional outputs; Lateralization of brain function