When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particulate matter sampler - Wikipedia

    en.wikipedia.org/wiki/Particulate_matter_sampler

    Modern particulate samplers use a volumetric flow control system that pulls air through the particle separator at the velocity required to achieve the desired cutpoint. For air pollution applications, the definition of "particulate" does not include uncombined water , and water from a particulate sample must be removed before it is weighed.

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:

  4. Autosampler - Wikipedia

    en.wikipedia.org/wiki/Autosampler

    An autosampler for liquid or gaseous samples based on a microsyringe. Autosamplers for liquids work along many kinds of machines that perform different kinds of chemical measurements, like titrators, gas chromatographers, liquid chromatographers, water analyzers (like total carbon analyzers, dissolved inorganic carbon analyzers, nutrient analyzers) and many others.

  5. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    One advantage of ultrasonic flowmeters is that they can effectively measure the flow rates for a wide variety of fluids, as long as the speed of sound through that fluid is known. For example, ultrasonic flowmeters are used for the measurement of such diverse fluids as liquid natural gas (LNG) and blood. [ 20 ]

  6. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the greater density of water, which works to slow sound in water relative to the air, nearly makes up for the compressibility differences in the two media.

  7. Torricelli's law - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_law

    By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high.

  8. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    In other words, for an object floating on a liquid surface (like a boat) or floating submerged in a fluid (like a submarine in water or dirigible in air) the weight of the displaced liquid equals the weight of the object. Thus, only in the special case of floating does the buoyant force acting on an object equal the objects weight.

  9. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    The large impedance contrast between air and water (the ratio is about 3600) and the scale of surface roughness means that the sea surface behaves as an almost perfect reflector of sound at frequencies below 1 kHz. Sound speed in water exceeds that in air by a factor of 4.4 and the density ratio is about 820.