Search results
Results From The WOW.Com Content Network
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations .
The Hasse diagram of the free Boolean algebra on two generators, p and q. Take p (left circle) to be "John is tall" and q (right circle)to be "Mary is rich". The atoms are the four elements in the row just above FALSE. The generators of a free Boolean algebra can represent independent propositions. Consider, for example, the propositions "John ...
In mathematical logic, minimal axioms for Boolean algebra are assumptions which are equivalent to the axioms of Boolean algebra (or propositional calculus), chosen to be as short as possible. For example, an axiom with six NAND operations and three variables is equivalent to Boolean algebra: [ 1 ]
The stroke is named after Henry Maurice Sheffer, who in 1913 published a paper in the Transactions of the American Mathematical Society [10] providing an axiomatization of Boolean algebras using the stroke, and proved its equivalence to a standard formulation thereof by Huntington employing the familiar operators of propositional logic (AND, OR, NOT).
The 256-element free Boolean algebra on three generators is deployed in computer displays based on raster graphics, which use bit blit to manipulate whole regions consisting of pixels, relying on Boolean operations to specify how the source region should be combined with the destination, typically with the help of a third region called the mask.
There is an isomorphism between the algebra of sets and the Boolean algebra, that is, they have the same structure. Then, if we map boolean operators into set operators, the "translated" above text are valid also for sets: there are many "minimal complete set of set-theory operators" that can generate any other set relations.
Where the nontrival Boolean operators can be named (AND, NAND, OR, NOR, XOR, XNOR (equivalence), and 4 variants of implication or inequality), with six trivial operators considering 0 or 1 inputs only, it is unreasonable to attempt to name all but a small fraction of the possible ternary operators. [18]
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...