When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    The geometric mean is more appropriate than the arithmetic mean for describing proportional growth, both exponential growth (constant proportional growth) and varying growth; in business the geometric mean of growth rates is known as the compound annual growth rate (CAGR). The geometric mean of growth over periods yields the equivalent constant ...

  3. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    The mean is the geometric when they are such that as the first is to the second, so the second is to the third. Of these terms the greater and the lesser have the interval between them equal. Subcontrary, which we call harmonic, is the mean when they are such that, by whatever part of itself the first term exceeds the second, by that part of ...

  4. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then

  5. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  6. Titer - Wikipedia

    en.wikipedia.org/wiki/Titer

    A viral titer is the lowest concentration of a virus that still infects cells. To determine the titer, several dilutions are prepared, such as 10 −1, 10 −2, 10 −3, ... 10 −8. [1] The titer of a fat is the temperature, in degrees Celsius, at which it solidifies. [4] The higher the titer, the harder the fat.

  7. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    In mathematics, generalized means (or power mean or Hölder mean from Otto Hölder) [1] are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means ( arithmetic , geometric , and harmonic means ).

  8. Arithmetic–geometric mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic–geometric_mean

    In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...

  9. Geometric standard deviation - Wikipedia

    en.wikipedia.org/wiki/Geometric_standard_deviation

    The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ⁡ (⁡ (⁡)).