Search results
Results From The WOW.Com Content Network
Loudness, a subjective measure, is often confused with physical measures of sound strength such as sound pressure, sound pressure level (in decibels), sound intensity or sound power. Weighting filters such as A-weighting and LKFS attempt to compensate measurements to correspond to loudness as perceived by the typical human.
I is the sound intensity; I 0 is the reference sound intensity; 1 Np = 1 is the neper; 1 B = 1 / 2 ln(10) is the bel; 1 dB = 1 / 20 ln(10) is the decibel. The commonly used reference sound intensity in air is [5] = /. being approximately the lowest sound intensity hearable by an undamaged human ear under room conditions.
According to Stevens' definition, a loudness of 1 sone is equivalent to 40 phons (a 1 kHz tone at 40 dB SPL). [1] The phons scale aligns with dB, not with loudness, so the sone and phon scales are not proportional. Rather, the loudness in sones is, at least very nearly, a power law function of the signal intensity, with an exponent of 0.3.
Equal-loudness contours. The phon is a logarithmic unit of loudness level for tones and complex sounds. Loudness is measured in sones, a linear unit.Human sensitivity to sound is variable across different frequencies; therefore, although two different tones may present an identical sound pressure to a human ear, they may be psychoacoustically perceived as differing in loudness.
The ratio of the sound intensity that causes permanent damage during short exposure to that of the quietest sound that the ear can hear is equal to or greater than 1 trillion (10 12). [37] Such large measurement ranges are conveniently expressed in logarithmic scale : the base-10 logarithm of 10 12 is 12, which is expressed as a sound intensity ...
[28] [29] [30] This means that at short durations, a very short sound can sound softer than a longer sound even though they are presented at the same intensity level. Past around 200 ms this is no longer the case and the duration of the sound no longer affects the apparent loudness of the sound.
However, decibels are a logarithimic scale, so that successive 10 dB increments represent greater increases in loudness. For humans, normal hearing is between −10 dB(HL) and 15 dB(HL), [2] [3] although 0 dB from 250 Hz to 8 kHz is deemed to be 'average' normal hearing.
Analysis of sound and acoustics plays a role in such engineering tasks as product design, production test, machine performance, and process control. For instance, product design can require modification of sound level or noise for compliance with standards from ANSI, IEC, and ISO. The work might also involve design fine-tuning to meet market ...