When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called GaussJordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Also they commute with A and their sum is the identity matrix. Replacing every v i in the Jordan matrix J by one and zeroing all other entries gives P(v i ; J), moreover if U J U −1 is the similarity transformation such that A = U J U −1 then P(λ i ; A) = U P(λ i ; J) U −1. They are not confined to finite dimensions.

  4. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called GaussJordan elimination. A matrix is in column echelon form if its transpose is in

  5. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Before Gauss many mathematicians in Eurasia were performing and perfecting it yet as the method became relegated to school grade, few of them left any detailed descriptions. Thus the name Gaussian elimination is only a convenient abbreviation of a complex history. The Polish astronomer Tadeusz Banachiewicz introduced the LU decomposition in ...

  7. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A −1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or ...

  8. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m.

  9. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    An atomic (lower or upper) triangular matrix is a special form of unitriangular matrix, where all of the off-diagonal elements are zero, except for the entries in a single column. Such a matrix is also called a Frobenius matrix, a Gauss matrix, or a Gauss transformation matrix.