When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    For an ideal absorber/emitter or black body, the Stefan–Boltzmann law states that the total energy radiated per unit surface area per unit time (also known as the radiant exitance) is directly proportional to the fourth power of the black body's temperature, T: =.

  3. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    When the body is black, the absorption is obvious: the amount of light absorbed is all the light that hits the surface. For a black body much bigger than the wavelength, the light energy absorbed at any wavelength λ per unit time is strictly proportional to the blackbody curve. This means that the blackbody curve is the amount of light energy ...

  4. Brightness temperature - Wikipedia

    en.wikipedia.org/wiki/Brightness_temperature

    Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]

  5. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = ⁡ alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = ⁡ where k B is the Boltzmann ...

  6. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    A grey body is one where α, ρ and τ are constant for all wavelengths; this term also is used to mean a body for which α is temperature- and wavelength-independent. A white body is one for which all incident radiation is reflected uniformly in all directions: τ = 0, α = 0, and ρ = 1. For a black body, τ = 0, α = 1, and ρ = 0. Planck ...

  7. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Radiance is the integral of the spectral radiance over all frequencies or wavelengths. For radiation emitted by the surface of an ideal black body at a given temperature, spectral radiance is governed by Planck's law, while the integral of its radiance, over the hemisphere into which its surface radiates, is given by the Stefan–Boltzmann law.

  8. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law , the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths.

  9. Rayleigh–Jeans law - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Jeans_law

    Comparison of Rayleigh–Jeans law with Wien approximation and Planck's law, for a body of 5800 K temperature.. In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments.