Search results
Results From The WOW.Com Content Network
Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations. In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [ 1 ]
A network with two components or branches has only two possible topologies: series and parallel. Figure 1.2. Series and parallel topologies with two branches. Even for these simplest of topologies, the circuit can be presented in varying ways. Figure 1.3. All these topologies are identical. Series topology is a general name.
In each circuit, there is a 9 V battery and two 500 Ω resistors. In the series circuit, the resistors subtract voltage and the current is equal everywhere. In the parallel circuit, each resistor provides additional conductivity, so the current through each of them is summed and the voltage is equal everywhere. See Series and parallel circuits.
The properties of the parallel RLC circuit can be obtained from the duality relationship of electrical circuits and considering that the parallel RLC is the dual impedance of a series RLC. Considering this, it becomes clear that the differential equations describing this circuit are identical to the general form of those describing a series RLC.
The expression series-parallel can apply to different domains: Series and parallel circuits for electrical circuits and electronic circuits; Series-parallel partial order, in partial order theory; Series–parallel graph in graph theory; Series–parallel networks problem, a combinatorial problem about series–parallel graphs
These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here ...
Indeed, a graph has treewidth at most 2 if and only if it has branchwidth at most 2, if and only if every biconnected component is a series–parallel graph. [4] [5] The maximal series–parallel graphs, graphs to which no additional edges can be added without destroying their series–parallel structure, are exactly the 2-trees.
If all circuit components were linear or the circuit was linearized beforehand, the equation system at this point is a system of linear equations and is solved with numerical linear algebra methods. Otherwise, it is a nonlinear algebraic equation system and is solved with nonlinear numerical methods such as Root-finding algorithms .