Search results
Results From The WOW.Com Content Network
The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds , when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts .
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, [1] and is the primary interaction occurring in ionic compounds.
The strength of a bond can be estimated by comparing the atomic radii of the atoms that form the bond to the length of bond itself. For example, the atomic radius of boron is estimated at 85 pm, [10] while the length of the B–B bond in B 2 Cl 4 is 175 pm. [11] Dividing the length of this bond by the sum of each boron atom's radius gives a ratio of
Ionic bonding is a type of electrostatic interaction between atoms that have a large electronegativity difference. There is no precise value that distinguishes ionic from covalent bonding, but an electronegativity difference of over 1.7 is likely to be ionic while a difference of less than 1.7 is likely to be covalent. [21]
The bond dissociation energy is an enthalpy change of a particular chemical process, namely homolytic bond cleavage, and "bond strength" as measured by the BDE should not be regarded as an intrinsic property of a particular bond type but rather as an energy change that depends on the chemical context.
The bond length, or the minimum separating distance between two atoms participating in bond formation, is determined by their repulsive and attractive forces along the internuclear direction. [3] As the two atoms get closer and closer, the positively charged nuclei repel, creating a force that attempts to push the atoms apart.
The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding.
For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.