Search results
Results From The WOW.Com Content Network
Early monociliated ependymal cells are differentiated to multiciliated ependymal cells for their function in circulating cerebrospinal fluid. [3] The basal membranes of these cells are characterized by tentacle-like extensions that attach to astrocytes. The apical side is covered in cilia and microvilli. [4]
Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central nervous system. [2] [3] The choroid plexus consists of modified ependymal cells surrounding a core of capillaries and loose connective tissue. [3] Multiple cilia on the ependymal cells move to circulate the cerebrospinal fluid. [4]
Ependymal cells secrete high molecular mass glycoproteins into the cerebrospinal fluid, in which the bulk of them condense to form a filamentous structure named Reissner's fiber. [4] The subcommissural organ/ Reissner's fiber complex is thought to be involved in the reabsorption and circulation of the cerebrospinal fluid, and with functions ...
Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialized ependymal cells in the choroid plexus of the ventricles of the brain, and absorbed in the arachnoid granulations. In humans, there is about 125 mL of CSF at any one time ...
Tanycytes are highly specialized ependymal cells found in the third ventricle of the brain, and on the floor of the fourth ventricle. Each tanycyte has a long basal process that extends deep into the hypothalamus. It is possible that their function is to transfer chemical signals from the cerebrospinal fluid to the central nervous system.
This schematic illustrates the four different types of glial cells, all of which possess cytoplasmic processes: ependymal cells (light pink), astrocytes (green), microglia (red), and oligodendrocytes (light blue). Cell bodies of neurons are in yellow (Their axons are surrounded by myelin, produced by oligodendrocytes).
[1] [2] The choroid plexus produces most of the cerebrospinal fluid of the central nervous system that circulates through the ventricles of the brain, the central canal of the spinal cord, and the subarachnoid space. [4] [2] The tela choroidea in the ventricles forms from different parts of the roof plate in the development of the embryo. [2] [1]
The ventricles are filled with cerebrospinal fluid (CSF) which bathes and cushions the brain and spinal cord within their bony confines. CSF is produced by modified ependymal cells of the choroid plexus found in all components of the ventricular system except for the cerebral aqueduct and the posterior and anterior horns of the lateral ventricles.