When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  3. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++, Wolfram Language, CUDA: Wolfram Language: Yes No Yes No Yes Yes [75] Yes Yes Yes Yes [76] Yes Software Creator Initial release Software license [a] Open source Platform Written in Interface OpenMP support OpenCL support CUDA support ROCm support [77] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs

  4. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA provides both a low level API (CUDA Driver API, non single-source) and a higher level API (CUDA Runtime API, single-source). The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0, [17] which supersedes the beta released February 14, 2008. [18]

  5. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow is Google Brain's second-generation system. Version 1.0.0 was released on February 11, 2017. [17] While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18]

  7. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    It is designed to follow the structure and workflow of NumPy as closely as possible and works with various existing frameworks such as TensorFlow and PyTorch. [5] [6] The primary functions of JAX are: [2] grad: automatic differentiation; jit: compilation; vmap: auto-vectorization; pmap: Single program, multiple data (SPMD) programming

  8. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. [7] [8] [9] As of version 2.4, only TensorFlow was supported. Starting with version 3.0 (as well as its preview version, Keras Core), however, Keras has become multi-backend again, supporting TensorFlow, JAX, and ...

  9. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.