Search results
Results From The WOW.Com Content Network
The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
When there is a hydrogen ion gradient between two sides of the biological membrane, the concentration of some weak bases are focused on only one side of the membrane. [6] Weak bases tend to build up in acidic fluids. [6] Acid gastric contains a higher concentration of weak base than plasma. [6]
The isohydric principle is the phenomenon whereby multiple acid/base pairs in solution will be in equilibrium with one another, tied together by their common reagent: the hydrogen ion and hence, the pH of solution. That is, when several buffers are present together in the same solution, they are all exposed to the same hydrogen ion activity.
A typical titration curve of a diprotic acid, oxalic acid, titrated with a strong base, sodium hydroxide.Both equivalence points are visible. Titrations are often recorded on graphs called titration curves, which generally contain the volume of the titrant as the independent variable and the pH of the solution as the dependent variable (because it changes depending on the composition of the ...
Therefore, a buffer solution may be added to the titration chamber to maintain the pH. [20] In instances where two reactants in a sample may react with the titrant and only one is the desired analyte, a separate masking solution may be added to the reaction chamber which eliminates the effect of the unwanted ion. [21]
If potassium chloride is added to mercurous nitrate on one side, mercury (I) chloride is precipitated. This decreased the osmotic pressure of mercury (I) ions on the side and creates a potential difference. This potential difference increases slowly as additional potassium chloride is added, but then increases more rapidly.
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]