When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the

  3. Symmetrical components - Wikipedia

    en.wikipedia.org/wiki/Symmetrical_components

    This article discusses voltage; however, the same considerations also apply to current. In a perfectly balanced three-phase power system, the voltage phasor components have equal magnitudes but are 120 degrees apart. In an unbalanced system, the magnitudes and phases of the voltage phasor components are different.

  4. Alpha–beta transformation - Wikipedia

    en.wikipedia.org/wiki/Alpha–beta_transformation

    Thus, a of zero indicates that the system is balanced (and thus exists entirely in the alpha-beta coordinate space), and can be ignored for two coordinate calculations that operate under this assumption that the system is balanced. This is the elegance of the clarke transform as it reduces a three component system into a two component system ...

  5. Harmonics (electrical power) - Wikipedia

    en.wikipedia.org/wiki/Harmonics_(electrical_power)

    A set of three line (or line-to-line) voltages in a balanced three-phase (three-wire or four-wire) power system cannot contain harmonics whose frequency is an integer multiple of the frequency of the third harmonics (i.e. harmonics of order =), which includes triplen harmonics (i.e. harmonics of order = ()). [3]

  6. Three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Three-phase_electric_power

    In a symmetric three-phase power supply system, three conductors each carry an alternating current of the same frequency and voltage amplitude relative to a common reference, but with a phase difference of one third of a cycle (i.e., 120 degrees out of phase) between each. The common reference is usually connected to ground and often to a ...

  7. Direct-quadrature-zero transformation - Wikipedia

    en.wikipedia.org/wiki/Direct-quadrature-zero...

    This implies a three-dimensional perspective, as shown in the figure above. So, the two-dimensional perspective is really showing the projection of the three-dimensional reality onto a plane. Two-dimensional perspective of a three-dimensional reality. Three-phase problems are typically described as operating within this plane.

  8. Electrical fault - Wikipedia

    en.wikipedia.org/wiki/Electrical_fault

    a zero-sequence component, which is not truly a three-phase system, but instead all three phases are in phase with each other. To determine the currents resulting from an asymmetric fault, one must first know the per-unit zero-, positive-, and negative-sequence impedances of the transmission lines, generators, and transformers involved. Three ...

  9. Scott-T transformer - Wikipedia

    en.wikipedia.org/wiki/Scott-T_transformer

    Two-phase motors draw constant power, just as three-phase motors do, so a balanced two-phase load is converted to a balanced three-phase load. However if a two-phase load is not balanced (more power drawn from one phase than the other), no arrangement of transformers (including the Scott-T transformers) can restore balance: Unbalanced current ...