Search results
Results From The WOW.Com Content Network
The condensation algorithm (Conditional Density Propagation) is a computer vision algorithm. The principal application is to detect and track the contour of objects moving in a cluttered environment. Object tracking is one of the more basic and difficult aspects of computer vision and is generally a prerequisite to object recognition. Being ...
Efficient PnP (EPnP) is a method developed by Lepetit, et al. in their 2008 International Journal of Computer Vision paper [9] that solves the general problem of PnP for n ≥ 4. This method is based on the notion that each of the n points (which are called reference points) can be expressed as a weighted sum of four virtual control points ...
In many computer-vision applications, computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common. Examples of applications of computer vision include systems for: Learning 3D shapes has been a challenging task in computer vision.
General scheme of content-based image retrieval. Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey [1] for a scientific overview of the CBIR field).
Image registration has applications in remote sensing (cartography updating), and computer vision. Due to the vast range of applications to which image registration can be applied, it is impossible to develop a general method that is optimized for all uses.
Connected-component labeling is used in computer vision to detect connected regions in binary digital images, although color images and data with higher dimensionality can also be processed. [ 1 ] [ 2 ] When integrated into an image recognition system or human-computer interaction interface, connected component labeling can operate on a variety ...
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]
Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...