Ads
related to: magnitude of a vector in math meaning pdf example worksheet
Search results
Results From The WOW.Com Content Network
By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
A Euclidean vector may possess a definite initial point and terminal point; such a condition may be emphasized calling the result a bound vector. [12] When only the magnitude and direction of the vector matter, and the particular initial or terminal points are of no importance, the vector is called a free vector.
To accommodate for the change of coordinates the magnitude of the Jacobian determinant arises as a multiplicative factor within the integral. This is because the n -dimensional dV element is in general a parallelepiped in the new coordinate system, and the n -volume of a parallelepiped is the determinant of its edge vectors.
The rotation vector is an example of an axial vector. Axial vectors, or pseudovectors, are vectors with the special feature that their coordinates undergo a sign change relative to the usual vectors (also called "polar vectors") under inversion through the origin, reflection in a plane, or other orientation-reversing linear transformation. [ 18 ]
The magnitude of a vector (such as distance) is another example of an invariant, because it remains fixed even if geometrical vector components vary. (For example, for a position vector of length meters, if all Cartesian basis vectors are changed from meters in length to meters in length, the length of the position vector remains unchanged at ...