When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Consistency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Consistency_(statistics)

    A consistent estimator is one for which, when the estimate is considered as a random variable indexed by the number n of items in the data set, as n increases the estimates converge in probability to the value that the estimator is designed to estimate.

  3. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ 0 —having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ 0.

  4. Stationary process - Wikipedia

    en.wikipedia.org/wiki/Stationary_process

    Then {} is a stationary time series, for which realisations consist of a series of constant values, with a different constant value for each realisation. A law of large numbers does not apply on this case, as the limiting value of an average from a single realisation takes the random value determined by Y {\displaystyle Y} , rather than taking ...

  5. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased (see bias versus consistency for more). All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias ...

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Consistency model - Wikipedia

    en.wikipedia.org/wiki/Consistency_model

    While replication can improve performance and reliability, it can cause consistency problems between multiple copies of data. The multiple copies are consistent if a read operation returns the same value from all copies and a write operation as a single atomic operation (transaction) updates all copies before any other operation takes place.

  8. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Thus, regression analysis using heteroscedastic data will still provide an unbiased estimate for the relationship between the predictor variable and the outcome, but standard errors and therefore inferences obtained from data analysis are suspect. Biased standard errors lead to biased inference, so results of hypothesis tests are possibly wrong.

  9. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    The consistency defined above may be called weak consistency. The sequence is strongly consistent , if it converges almost surely to the true value. An estimator that converges to a multiple of a parameter can be made into a consistent estimator by multiplying the estimator by a scale factor , namely the true value divided by the asymptotic ...