Ad
related to: tangrowth db power
Search results
Results From The WOW.Com Content Network
The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. Until the mid-1920s, the unit for loss was miles of standard cable (MSC). 1 MSC corresponded to the loss of power over one mile (approximately 1.6 km) of standard telephone cable at a frequency of 5000 radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to a ...
The decibel watt (dBW or dB W) is a unit for the measurement of the strength of a signal expressed in decibels relative to one watt.It is used because of its capability to express both very large and very small values of power in a short range of number; e.g., 1 milliwatt = −30 dBW, 1 watt = 0 dBW, 10 watts = 10 dBW, 100 watts = 20 dBW, and 1,000,000 W = 60 dBW.
dBm or dB mW (decibel-milliwatts) is a unit of power level expressed using a logarithmic decibel (dB) scale respective to one milliwatt (mW). It is commonly used by radio, microwave and fiber-optical communication technicians & engineers to measure the power of system transmissions on a log scale , which can express both very large and very ...
In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB). If the power transmitted to the load before insertion is P T and the power received by the load after insertion is P R, then the insertion loss in decibels ...
In telecommunications, [1] particularly in radio frequency engineering, signal strength refers to the transmitter power output as received by a reference antenna at a distance from the transmitting antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m).
It is usually expressed as a ratio in decibels (dB); = where RL(dB) is the return loss in dB, P i is the incident power and P r is the reflected power. Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR.
dBc (decibels relative to the carrier) is the power ratio of a signal to a carrier signal, expressed in decibels.For example, phase noise is expressed in dBc/Hz at a given frequency offset from the carrier. dBc can also be used as a measurement of Spurious-Free Dynamic Range between the desired signal and unwanted spurious outputs resulting from the use of signal converters such as a digital ...
Such a difference can exceed 100 dB which represents a factor of 100,000 in amplitude and a factor 10,000,000,000 in power. [4] [5] The dynamic range of human hearing is roughly 140 dB, [6] [7] varying with frequency, [8] from the threshold of hearing (around −9 dB SPL [8] [9] [10] at 3 kHz) to the threshold of pain (from 120 to 140 dB SPL ...