Search results
Results From The WOW.Com Content Network
A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeros: 10, 000, 000 ...
All other four-digit numbers eventually reach 6174 if leading zeros are used to keep the number of digits at 4. For numbers with three identical digits and a fourth digit that is one higher or lower (such as 2111), it is essential to treat 3-digit numbers with a leading zero; for example: 2111 – 1112 = 0999; 9990 – 999 = 8991; 9981 – 1899 ...
A typical book can be printed with 10 6 zeros (around 400 pages with 50 lines per page and 50 zeros per line). Therefore, it requires 10 94 such books to print all the zeros of a googolplex (that is, printing a googol zeros). [4] If each book had a mass of 100 grams, all of them would have a total mass of 10 93 kilograms.
Stylistic impression of the repeating decimal 0.9999..., representing the digit 9 repeating infinitely. In mathematics, 0.999... (also written as 0. 9, 0.., or 0.(9)) is a repeating decimal that is an alternate way of writing the number 1.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
A form of unary notation called Church encoding is used to represent numbers within lambda calculus. Some email spam filters tag messages with a number of asterisks in an e-mail header such as X-Spam-Bar or X-SPAM-LEVEL. The larger the number, the more likely the email is considered spam. 10: Bijective base-10: To avoid zero: 26: Bijective base-26
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.