When.com Web Search

  1. Ads

    related to: flowchart for prime number check

Search results

  1. Results From The WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Also, 2 is a prime dividing 100, which immediately proves that 100 is not prime. Every positive integer except 1 is divisible by at least one prime number by the Fundamental Theorem of Arithmetic. Therefore the algorithm need only search for prime divisors less than or equal to .

  4. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  5. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  6. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.

  7. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    Input #1: b, the number of bits of the result Input #2: k, the number of rounds of testing to perform Output: a strong probable prime n while True: pick a random odd integer n in the range [2 b−1, 2 b −1] if the Miller–Rabin test with inputs n and k returns “probably prime” then return n

  8. Elliptic curve primality - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_primality

    The idea here is to find an m that is divisible by a large prime number q. This prime is a few digits smaller than m (or N) so q will be easier to prove prime than N. Assuming we find a curve which passes the criterion, proceed to calculate mP and kP. If any of the two calculations produce an undefined expression, we can get a non-trivial ...

  9. Primality certificate - Wikipedia

    en.wikipedia.org/wiki/Primality_certificate

    We continue recursively in this manner until we reach a number known to be prime, such as 2. We end up with a tree of prime numbers, each associated with a witness a. For example, here is a complete Pratt certificate for the number 229: 229 (a = 6, 229 − 1 = 2 2 × 3 × 19), 2 (known prime), 3 (a = 2, 3 − 1 = 2), 2 (known prime),