Search results
Results From The WOW.Com Content Network
The sodium–potassium pump (sodium–potassium adenosine triphosphatase, also known as Na + /K +-ATPase, Na + /K + pump, or sodium–potassium ATPase) is an enzyme (an electrogenic transmembrane ATPase) found in the membrane of all animal cells. It performs several functions in cell physiology. The Na + /K +-ATPase enzyme is active (i.e. it ...
The SGLT functions to couple the transport of sodium in the exoplasmic space down its concentration gradient (again, established by the active transport of sodium out of the cell by the sodium-potassium pump) into the cytoplasmic space to the transport of glucose in the exoplasmic space against its concentration gradient into the cytoplasmic ...
Amino acids and sugars are taken up from sea water in the presence of extracellular sodium and is driven by the NA + /K +-ATPase pump. [ 1 ] In the roots of plants , the H+/K+ symporters are only one member of a group of several symporters/antiporters that specifically allow only one charged hydrogen ion (more commonly known as a proton) and ...
The basic function of the Na-K-Cl cotransporter (NKCC). The Na–K–Cl cotransporter (NKCC) is a transport protein that aids in the secondary active transport of sodium, potassium, and chloride into cells. [1]
[1] [2] Both SGLT1 and SGLT2 function as symporters, utilizing the energy from the sodium gradient created by the Na+/K+ ATPase to transport glucose against its concentration gradient. [ 2 ] [ 3 ] SGLT2, encoded by the SLC5A2 gene, is predominantly expressed in the S1 and S2 segments of the proximal renal tubule and is responsible for ...
Na+/K+ -ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium- coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle.
Some ion pumps such as the Na+/K+-ATPase are electrogenic, that is, they produce charge imbalance across the cell membrane and can also contribute directly to the membrane potential. Most pumps use metabolic energy (ATP) to function.
Ouabain is a cardiac glycoside that acts by non-selectively inhibiting the Na + /K +-ATPase sodium–potassium ion pump. [2] Once ouabain binds to this enzyme, the enzyme ceases to function, leading to an increase of intracellular sodium.