Search results
Results From The WOW.Com Content Network
In mathematics, specifically in elementary arithmetic and elementary algebra, given an equation between two fractions or rational expressions, one can cross-multiply to simplify the equation or determine the value of a variable.
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.
A ratio is often converted to a fraction when it is expressed as a ratio to the whole. In the above example, the ratio of yellow cars to all the cars on the lot is 4:12 or 1:3. We can convert these ratios to a fraction, and say that 4 / 12 of the cars or 1 / 3 of the cars in the lot are yellow.
When a ratio is written in the form A:B, the two-dot character is sometimes the colon punctuation mark. [8] In Unicode, this is U+003A : COLON, although Unicode also provides a dedicated ratio character, U+2236 ∶ RATIO. [9] The numbers A and B are sometimes called terms of the ratio, with A being the antecedent and B being the consequent. [10]
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
where d(x,y) is the Euclidean distance from x to y. [16] The scalar r has many names in the literature including; the ratio of similarity, the stretching factor and the similarity coefficient. When r = 1 a similarity is called an isometry (rigid transformation). Two sets are called similar if one is the image of the other under a similarity.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
The silver ratio is a Pisot number, [5] the next quadratic Pisot number after the golden ratio. By definition of these numbers, the absolute value 2 − 1 {\displaystyle {\sqrt {2}}-1} of the algebraic conjugate is smaller than 1, thus powers of σ {\displaystyle \sigma } generate almost integers and the sequence σ n mod 1 ...