When.com Web Search

  1. Ads

    related to: reflection over y=-x geometry graph formula worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  3. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  4. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    In the Euclidean plane, reflections and glide reflections are the only two kinds of indirect (orientation-reversing) isometries. For example, there is an isometry consisting of the reflection on the x-axis, followed by translation of one unit parallel to it. In coordinates, it takes

  5. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In Euclidean geometry, the inversion of a point X with respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*. The formula for the inversion in P is x* = 2p − x. where p, x and x* are the position vectors of P, X ...

  6. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  7. Oblique reflection - Wikipedia

    en.wikipedia.org/wiki/Oblique_reflection

    For example, consider the plane P to be the xy plane, that is, the plane given by the equation z=0 in Cartesian coordinates. Let the direction of the reference line L be given by the vector (a, b, c), with c≠0 (that is, L is not parallel to P). The oblique reflection of a point (x, y, z) will then be