When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power set - Wikipedia

    en.wikipedia.org/wiki/Power_set

    In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. [1] In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. [2]

  3. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set, the set of all subsets of , known as the power set of , has a strictly greater cardinality than itself.

  4. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    The only subset of the empty set is the empty set itself; equivalently, the power set of the empty set is the set containing only the empty set. The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    The empty set is also occasionally called the null set, [11] though this name is ambiguous and can lead to several interpretations. The power set of a set A, denoted (), is the set whose members are all of the possible subsets of A. For example, the power set of {1, 2} is { {}, {1}, {2}, {1, 2} }. Notably, () contains both A and the empty set.

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    The empty set is a subset of every set (the statement that all elements of the empty set are also members of any set A is vacuously true). The set of all subsets of a given set A is called the power set of A and is denoted by or (); the "P" is sometimes in a script font: ⁠ ℘ ⁠.

  7. Simple theorems in the algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Simple_theorems_in_the...

    The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.

  8. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    At stage 0, there are no sets yet. At each following stage, a set is added to the universe if all of its elements have been added at previous stages. Thus the empty set is added at stage 1, and the set containing the empty set is added at stage 2. [11] The collection of all sets that are obtained in this way, over all the stages, is known as V.

  9. σ-algebra - Wikipedia

    en.wikipedia.org/wiki/Σ-algebra

    The family consisting only of the empty set and the set , called the minimal or trivial σ-algebra over . The power set of X , {\displaystyle X,} called the discrete σ-algebra . The collection { ∅ , A , X ∖ A , X } {\displaystyle \{\varnothing ,A,X\setminus A,X\}} is a simple σ-algebra generated by the subset A . {\displaystyle A.}