When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    The alternative follows from Mercer's theorem: an implicitly defined function exists whenever the space can be equipped with a suitable measure ensuring the function satisfies Mercer's condition. Mercer's theorem is similar to a generalization of the result from linear algebra that associates an inner product to any positive-definite matrix .

  4. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    A training example of SVM with kernel given by φ((a, b)) = (a, b, a 2 + b 2) Suppose now that we would like to learn a nonlinear classification rule which corresponds to a linear classification rule for the transformed data points ().

  5. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    The hyperplane learned in feature space by an SVM is an ellipse in the input space. In machine learning , the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original ...

  6. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    Here, K is some kernel function. Formally, a kernel function is a non-negative semidefinite kernel (see Mercer's condition), representing an inner product between samples in a high-dimensional space, as if the samples had been expanded to include additional features by a function Φ: K(x, x') = Φ(x) · Φ(x').

  7. Multiple kernel learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_kernel_learning

    Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing ...

  8. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex, then the program is called convex and general methods from convex optimization can be used in most cases. If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used.

  9. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.