Search results
Results From The WOW.Com Content Network
Pauling first proposed [3] the concept of electronegativity in 1932 to explain why the covalent bond between two different atoms (A–B) is stronger than the average of the A–A and the B–B bonds. According to valence bond theory , of which Pauling was a notable proponent, this "additional stabilization" of the heteronuclear bond is due to ...
Atoms that lose electrons make positively charged ions (called cations). This transfer of electrons is known as electrovalence in contrast to covalence . In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. molecular ions like NH +
The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons. For an atom of helium, with 2 electrons, the atomic binding energy is the sum of the energy of first ionization (24.587 eV) and the energy of second ionization (54.418 eV), for a total of 79.005 eV. Atomic level
This means that the two shared electrons are closer to one of the atoms than the other, creating an imbalance of charge. Such bonds occur between two atoms with moderately different electronegativities and give rise to dipole–dipole interactions. The electronegativity difference between the two atoms in these bonds is 0.3 to 1.7.
For example, a helium atom containing four nucleons has a mass about 0.8% less than the total mass of four hydrogen atoms (each containing one nucleon). The helium nucleus has four nucleons bound together, and the binding energy which holds them together is, in effect, the missing 0.8% of mass.
Researchers such as Mott and Hubbard realized that the one-electron treatment was perhaps appropriate for strongly delocalized s- and p-electrons; but for d-electrons, and even more for f-electrons, the interaction with nearby individual electrons (and atomic displacements) may become stronger than the delocalized interaction that leads to ...
Electrons in an ionic bond tend to be mostly found around one of the two constituent atoms due to the large electronegativity difference between the two atoms, generally more than 1.9, (greater difference in electronegativity results in a stronger bond); this is often described as one atom giving electrons to the other. [5]
The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only cation that has no electrons, but even cations that (unlike hydrogen) still retain one or more electrons are still smaller than the neutral atoms or ...