When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  3. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Søren Brunak notes that “the patient record becomes as information-rich as possible” and thereby “maximizes the data mining opportunities.” [30] Hence, electronic patient records further expands the possibilities regarding medical data mining thereby opening the door to a vast source of medical data analysis.

  4. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]

  5. Text mining - Wikipedia

    en.wikipedia.org/wiki/Text_mining

    Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." [1] Written resources may include websites, books, emails, reviews, and ...

  6. Data stream mining - Wikipedia

    en.wikipedia.org/wiki/Data_stream_mining

    Data Stream Mining (also known as stream learning) is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities.

  7. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.

  8. Relational data mining - Wikipedia

    en.wikipedia.org/wiki/Relational_data_mining

    Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...

  9. Uplift modelling - Wikipedia

    en.wikipedia.org/wiki/Uplift_modelling

    Uplift modelling is a data mining technique that has been applied predominantly in the financial services, telecommunications and retail direct marketing industries to up-sell, cross-sell, churn and retention activities.