Search results
Results From The WOW.Com Content Network
The position of an n-dimensional rigid body is defined by the rigid transformation, [T] = [A, d], where d is an n-dimensional translation and A is an n × n rotation matrix, which has n translational degrees of freedom and n(n − 1)/2 rotational degrees of freedom.
For example, if the particles are rigid mass dipoles of fixed dipole moment, they will have three translational degrees of freedom and two additional rotational degrees of freedom. The energy in each degree of freedom will be described according to the above chi-squared distribution with one degree of freedom, and the total energy will be ...
By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
A single unconstrained body soaring in 3-space has 6 degrees of freedom: 3 translational (say, x,y,z); and 3 rotational (say, roll, pitch, yaw). So a system of n {\displaystyle n} unconnected rigid bodies moving in space (a flock of n {\displaystyle n} soaring seagulls) has 6 n {\displaystyle 6n} degrees of freedom measured relative to a fixed ...
The folded non-standardized t distribution is the distribution of the absolute value of the non-standardized t distribution with degrees of freedom; its probability density function is given by: [citation needed]
The node term picks up a factor of 3 due to there being translational degrees of freedom in the x, y, and z directions. By similar reasoning, M e q = 6 {\displaystyle M_{eq}=6} in 3D, as there is one equation of equilibrium for translational and rotational modes in each dimension.