Search results
Results From The WOW.Com Content Network
A higher-order function is a function that takes a function as an argument or returns one as a result. This is commonly used to customize the behavior of a generically defined function, often a looping construct or recursion scheme. Anonymous functions are a convenient way to specify such function arguments. The following examples are in Python 3.
Function annotations (type hints) are defined in PEP 3107. [32] They allow attaching data to the arguments and return of a function. The behaviour of annotations is not defined by the language, and is left to third party frameworks. For example, a library could be written to handle static typing: [32]
A simple example of a higher-ordered function is the map function, which takes, as its arguments, a function and a list, and returns the list formed by applying the function to each member of the list. For a language to support map, it must support passing a function as an argument.
Higher-order functions are closely related to first-class functions in that higher-order functions and first-class functions both allow functions as arguments and results of other functions. The distinction between the two is subtle: "higher-order" describes a mathematical concept of functions that operate on other functions, while "first-class ...
In functional programming, filter is a higher-order function that processes a data structure (usually a list) in some order to produce a new data structure containing exactly those elements of the original data structure for which a given predicate returns the Boolean value true.
Map is sometimes generalized to accept dyadic (2-argument) functions that can apply a user-supplied function to corresponding elements from two lists. Some languages use special names for this, such as map2 or zipWith. Languages using explicit variadic functions may have versions of map with variable arity to support variable-arity functions ...
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
In case of call by value, what is passed to the function is the value of the argument – for example, f(2) and a = 2; f(a) are equivalent calls – while in call by reference, with a variable as argument, what is passed is a reference to that variable - even though the syntax for the function call could stay the same. [5]