Search results
Results From The WOW.Com Content Network
Using this definition, the negative of a non-zero gradient is always a descent direction, as (), = (), <. Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method .
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
Illustration of gradient descent on a series of level sets. Gradient descent is based on the observation that if the multi-variable function is defined and differentiable in a neighborhood of a point , then () decreases fastest if one goes from in the direction of the negative gradient of at , ().
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
Slope may still be expressed when the horizontal run is not known: the rise can be divided by the hypotenuse (the slope length). This is not the usual way to specify slope; this nonstandard expression follows the sine function rather than the tangent function, so it calls a 45 degree slope a 71 percent grade instead of a 100 percent. But in ...
This buoyant force is the negative gradient of pressure: =. Since buoyant force points upwards, in the direction opposite to gravity, then pressure in the fluid increases downwards. Pressure in a static body of water increases proportionally to the depth below the surface of the water.
The 4-wavevector is the 4-gradient of the negative phase (or the negative 4-gradient of the phase) of a wave in Minkowski Space: [6]: 387 = = (,) = ...
The figure at right illustrates the formula. Notice that the slope in the example of the figure is negative. The formula also provides a negative slope, as can be seen from the following property of the logarithm: (/) = (/).