When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    To find the reflection of a figure, reflect each point in the figure. To reflect point P through the line AB using compass and straightedge, proceed as follows (see figure): Step 1 (red): construct a circle with center at P and some fixed radius r to create points A′ and B′ on the line AB, which will be equidistant from P.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  6. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    A glide reflection is the composition of a reflection across a line and a translation parallel to the line. This footprint trail has glide-reflection symmetry. Applying the glide reflection maps each left footprint into a right footprint and vice versa.

  7. Symmetry operation - Wikipedia

    en.wikipedia.org/wiki/Symmetry_operation

    In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.

  8. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The dihedral group D 2 is generated by the rotation r of 180 degrees, and the reflection s across the x-axis. The elements of D 2 can then be represented as {e, r, s, rs}, where e is the identity or null transformation and rs is the reflection across the y-axis. The four elements of D 2 (x-axis is vertical here) D 2 is isomorphic to the Klein ...

  9. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...