Search results
Results From The WOW.Com Content Network
As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor. As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5] Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix ...
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
The Kronecker delta is like the identity matrix when multiplied and contracted: ... For a Levi-Civita connection this tensor is defined to be zero, which for a ...
where is the Kronecker delta or identity matrix. Finite-dimensional real vector spaces with (pseudo-)metrics are classified up to signature, a coordinate-free property which is well-defined by Sylvester's law of inertia. Possible metrics on real space are indexed by signature (,).
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.
A connection form associates to each basis of a vector bundle a matrix of differential forms. The connection form is not tensorial because under a change of basis, the connection form transforms in a manner that involves the exterior derivative of the transition functions, in much the same way as the Christoffel symbols for the Levi-Civita ...
Antisymmetric matrix – Form of a matrix; Exterior algebra – Algebra associated to any vector space; Levi-Civita symbol – Antisymmetric permutation object acting on tensors; Ricci calculus – Tensor index notation for tensor-based calculations