Ad
related to: shortest distance between two straight lines
Search results
Results From The WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
Due to the idea that a 'straight line' is defined as the shortest path between two points, he mentions how congruence of triangles is necessary for Euclid's proof that a straight line in the plane is the shortest distance between two points.
Going the "long way round" on a great circle between two points on a sphere is a geodesic but not the shortest path between the points. The map t → t 2 {\displaystyle t\to t^{2}} from the unit interval on the real number line to itself gives the shortest path between 0 and 1, but is not a geodesic because the velocity of the corresponding ...
Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines = + = +, the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular ...
3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes. 4. Problem of the straight line as the shortest distance between two points. 5. Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group. 6. Mathematical treatment of the axioms ...
The equation for a straight line is = (). In other words, the shortest distance between two points is a straight line. [j] Beltrami's identity In physics problems it ...
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]
A rhumb line appears as a straight line on a Mercator projection map. [1] The name is derived from Old French or Spanish respectively: "rumb" or "rumbo", a line on the chart which intersects all meridians at the same angle. [1] On a plane surface this would be the shortest distance between two points.