Search results
Results From The WOW.Com Content Network
In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets.
At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes. [1] [3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of ...
An example from category 1 above is the field of Laurent series with a finite number of negative-power terms. For example, the Laurent series consisting only of the constant term 1 is identified with the real number 1, and the series with only the linear term x is thought of as the simplest infinitesimal, from which the other infinitesimals are ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor [ 1 ] and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ).
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The logarithm of an infinite cardinal number κ is defined as the least cardinal number μ such that κ ≤ 2 μ. Logarithms of infinite cardinals are useful in some fields of mathematics, for example in the study of cardinal invariants of topological spaces , though they lack some of the properties that logarithms of positive real numbers possess.
Certain fields of mathematics define infinite and transfinite numbers. For example, aleph-null is the cardinality of the infinite set of natural numbers, and aleph-one is the next greatest cardinal number. is the cardinality of the reals.