When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]

  3. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

  4. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.

  5. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics) Bertrand's postulate (number theory) Besicovitch covering theorem (mathematical analysis) Betti's theorem ; Beurling–Lax theorem (Hardy spaces) Bézout's theorem (algebraic geometry) Bing metrization theorem (general topology)

  7. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.

  8. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulates , and at present called axioms .

  9. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    The resulting structure, a model of elliptic geometry, satisfies the axioms of plane geometry except the parallel postulate. With the development of formal logic, Hilbert asked whether it would be possible to prove that an axiom system is consistent by analyzing the structure of possible proofs in the system, and showing through this analysis ...