Search results
Results From The WOW.Com Content Network
An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry , no Euclidean triangle can have more than one obtuse angle.
In Euclidean geometry, the base angles can not be obtuse (greater than 90°) or right (equal to 90°) because their measures would sum to at least 180°, the total of all angles in any Euclidean triangle. [8] Since a triangle is obtuse or right if and only if one of its angles is obtuse or right, respectively, an isosceles triangle is obtuse ...
Triangle – 3 sides Acute triangle; Equilateral triangle; Heptagonal triangle; Isosceles triangle. Golden Triangle; Obtuse triangle; Rational triangle; Heronian triangle. Pythagorean triangle; Isosceles heronian triangle; Primitive Heronian triangle; Right triangle. 30-60-90 triangle; Isosceles right triangle; Kepler triangle; Scalene triangle ...
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13
The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...
For example, in a polyhedron (3 ... Obtuse triangle; Rational triangle; Right triangle. 30-60-90 triangle; Isosceles right triangle; Kepler triangle; Scalene triangle;
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.