When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    Many central limit theorems provide conditions such that S n / √ Var(S n) converges in distribution to N(0,1) (the normal distribution with mean 0, variance 1) as n → ∞. In some cases, it is possible to find a constant σ 2 and function f(n) such that S n /(σ √ n⋅f ( n ) ) converges in distribution to N (0,1) as n → ∞ .

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This is justified by considering the central limit theorem in the log domain (sometimes called Gibrat's law). The log-normal distribution is the maximum entropy probability distribution for a random variate X —for which the mean and variance of ln( X ) are specified.

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    [4] [5] Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distribution as the number of samples increases.

  5. Central limit theorem for directional statistics - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem_for...

    The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.

  6. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3

  7. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The central limit theorem is a refinement of the law of large numbers. ... Suppose we wanted to calculate a 95% confidence interval for ...

  8. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and; as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.

  9. Stable distribution - Wikipedia

    en.wikipedia.org/wiki/Stable_distribution

    By the classical central limit theorem the properly normed sum of a set of random variables, each with finite variance, will tend toward a normal distribution as the number of variables increases. Without the finite variance assumption, the limit may be a stable distribution that is not normal.