When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    If angle C is obtuse then for sides a, b, and c we have [4]: p.1, #74 < + <, with the left inequality approaching equality in the limit only as the apex angle of an isosceles triangle approaches 180°, and with the right inequality approaching equality only as the obtuse angle approaches 90°.

  3. Lambert quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Lambert_quadrilateral

    In geometry, a Lambert quadrilateral (also known as Ibn al-Haytham–Lambert quadrilateral), [1] [2] is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest since if it could be shown to be a right angle, then the Euclidean parallel postulate could ...

  4. Rhombohedron - Wikipedia

    en.wikipedia.org/wiki/Rhombohedron

    A rhombohedron has two opposite apices at which all face angles are equal; a prolate rhombohedron has this common angle acute, and an oblate rhombohedron has an obtuse angle at these vertices. A cube is a special case of a rhombohedron with all sides square.

  5. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    Whether an isosceles triangle is acute, right or obtuse depends only on the angle at its apex. In Euclidean geometry, the base angles can not be obtuse (greater than 90°) or right (equal to 90°) because their measures would sum to at least 180°, the total of all angles in any Euclidean triangle. [8]

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7a – Proof of the law of cosines for acute angle γ by "cutting and pasting". Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that

  7. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    Two lines that form a right angle are said to be normal, orthogonal, or perpendicular. [7] An angle larger than a right angle and smaller than a straight angle (between 90° and 180°) is called an obtuse angle [6] ("obtuse" meaning "blunt"). An angle equal to ⁠ 1 / 2 ⁠ turn (180° or π radians) is called a straight angle. [5]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Right angle - Wikipedia

    en.wikipedia.org/wiki/Right_angle

    The straight lines which form right angles are called perpendicular. [8] Euclid uses right angles in definitions 11 and 12 to define acute angles (those smaller than a right angle) and obtuse angles (those greater than a right angle). [9] Two angles are called complementary if their sum is a right angle. [10]