When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  3. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    By a similar argument, the numerator values of 3.51, 4.61, and 5.3 may be used for the 97%, 99%, and 99.5% confidence intervals, respectively, and in general the upper end of the confidence interval can be given as ⁡ (), where is the desired confidence level.

  4. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  5. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    A 95% confidence level does not mean that 95% of the sample data lie within the confidence interval. A 95% confidence level does not mean that there is a 95% probability of the parameter estimate from a repeat of the experiment falling within the confidence interval computed from a given experiment.

  6. Coverage probability - Wikipedia

    en.wikipedia.org/wiki/Coverage_probability

    Hence, referring to a "nominal confidence level" or "nominal confidence coefficient" (e.g., as a synonym for nominal coverage probability) generally has to be considered tautological and misleading, as the notion of confidence level itself inherently implies nominality already. [a] The nominal coverage probability is often set at 0.95.

  7. Interval estimation - Wikipedia

    en.wikipedia.org/wiki/Interval_estimation

    In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. [1] The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method). [2]

  8. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.

  9. Confidence region - Wikipedia

    en.wikipedia.org/wiki/Confidence_region

    The confidence region is calculated in such a way that if a set of measurements were repeated many times and a confidence region calculated in the same way on each set of measurements, then a certain percentage of the time (e.g. 95%) the confidence region would include the point representing the "true" values of the set of variables being estimated.