Search results
Results From The WOW.Com Content Network
Three examples of the triangle inequality for triangles with sides of lengths x, y, z.The top example shows a case where z is much less than the sum x + y of the other two sides, and the bottom example shows a case where the side z is only slightly less than x + y.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
d(x, z) ≤ max {d(x, y), d(y, z)} (strong triangle inequality or ultrametric inequality). An ultrametric space is a pair ( M , d ) consisting of a set M together with an ultrametric d on M , which is called the space's associated distance function (also called a metric ).
The Minkowski inequality is the triangle inequality in (). In fact, it is a special case of the more general fact ... are non-negative, as we can see from the example ...
If = then this inequality reduces to the triangle inequality. It is in this sense that this condition generalizes the usual triangle inequality. A quasinorm [1] is a quasi-seminorm that also satisfies:
Pages in category "Triangle inequalities" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. *
The isoperimetric problem has been extended in multiple ways, for example, to curves on surfaces and to regions in higher-dimensional spaces. Perhaps the most familiar physical manifestation of the 3-dimensional isoperimetric inequality is the shape of a drop of water. Namely, a drop will typically assume a symmetric round shape.
According to the triangle inequality, for every three vertices u, v, and x, it should be the case that w(uv) + w(vx) ≥ w(ux). Then the algorithm can be described in pseudocode as follows. [1] Create a minimum spanning tree T of G. Let O be the set of vertices with odd degree in T. By the handshaking lemma, O has an even number of vertices.