When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    We can calculate the probability P as the product of two probabilities: P = P 1 · P 2, where P 1 is the probability that the center of the needle falls close enough to a line for the needle to possibly cross it, and P 2 is the probability that the needle actually crosses the line, given that the center is within reach.

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Probability density function (pdf) or probability density: function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.

  6. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.

  7. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    For k > 1, the density function tends to zero as x approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at x = 0 if 0 < k < 1, infinite positive slope at x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 1 the density has a finite negative slope at x = 0.

  8. Wrapped distribution - Wikipedia

    en.wikipedia.org/wiki/Wrapped_distribution

    Any probability density function () on the line can be "wrapped" around the circumference of a circle of unit radius. [1] That is, the PDF of the wrapped variable θ = ϕ mod 2 π {\displaystyle \theta =\phi \mod 2\pi } in some interval of length 2 π {\displaystyle 2\pi }

  9. Reciprocal distribution - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_distribution

    It is characterised by its probability density function, within the support of the distribution, being proportional to the reciprocal of the variable. The reciprocal distribution is an example of an inverse distribution, and the reciprocal (inverse) of a random variable with a reciprocal distribution itself has a reciprocal distribution.