When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Studentized range distribution - Wikipedia

    en.wikipedia.org/wiki/Studentized_range_distribution

    Suppose that we take a sample of size n from each of k populations with the same normal distribution N(μ, σ 2) and suppose that ¯ is the smallest of these sample means and ¯ is the largest of these sample means, and suppose s² is the pooled sample variance from these samples. Then the following statistic has a Studentized range distribution.

  3. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    For two discrete random variables, it is beneficial to generate a table of probabilities and address the cumulative probability for each potential range of X and Y, and here is the example: [10] given the joint probability mass function in tabular form, determine the joint cumulative distribution function.

  4. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  5. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    The probability density function is symmetric, and its overall shape resembles the bell shape of a normally distributed variable with mean 0 and variance 1, except that it is a bit lower and wider. As the number of degrees of freedom grows, the t distribution approaches the normal distribution with mean 0 and variance 1.

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().

  7. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  8. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    Demonstration of density estimation using Kernel density estimation: The true density is a mixture of two Gaussians centered around 0 and 3, shown with a solid blue curve. In each frame, 100 samples are generated from the distribution, shown in red. Centered on each sample, a Gaussian kernel is drawn in gray.

  9. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    [43] [44] One way to generate random variates samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that Pr(X = k) for all values k from 0 through n. (These probabilities should sum to a value close to one, in order to encompass the entire sample space.)