Ads
related to: excel formula for conditional value
Search results
Results From The WOW.Com Content Network
Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at (), the value at risk of level . [2] Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of ...
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
Expected shortfall is also called conditional value at risk (CVaR), [1] average value at risk (AVaR), expected tail loss (ETL), and superquantile. [ 2 ] ES estimates the risk of an investment in a conservative way, focusing on the less profitable outcomes.
The 5% Value at Risk of a hypothetical profit-and-loss probability density function. Value at risk (VaR) is a measure of the risk of loss of investment/capital.It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day.
Another issue with IIf arises because it is a library function: unlike the C-derived conditional operator, both truepart and the falsepart will be evaluated regardless of which one is actually returned. In the following code snippet: value = 10 result = IIf(value = 10, TrueFunction, FalseFunction)
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.