When.com Web Search

  1. Ad

    related to: factors of negative 36 and 64 in pairs of numbers calculator multiplication

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 ...

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Extension of this pattern into other quadrants gives the reason why a negative number times a negative number yields a positive number. Note also how multiplication by zero causes a reduction in dimensionality, as does multiplication by a singular matrix where the determinant is 0. In this process, information is lost and cannot be regained.

  6. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  7. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    If two numbers (whose average is a number which is easily squared) are multiplied, the difference of two squares can be used to give you the product of the original two numbers. For example: 27 × 33 = ( 30 − 3 ) ( 30 + 3 ) {\displaystyle 27\times 33=(30-3)(30+3)}

  8. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    In the case of a negative 11, multiplier, or both apply the sign to the final product as per normal multiplication of the two numbers. A step-by-step example of 759 × 11: The ones digit of the multiplier, 9, is copied to the temporary result. result: 9; Add 5 + 9 = 14 so 4 is placed on the left side of the result and carry the 1. result: 49

  9. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    One of the simplest and most natural examples is the multiset of prime factors of a natural number n. Here the underlying set of elements is the set of prime factors of n . For example, the number 120 has the prime factorization 120 = 2 3 3 1 5 1 , {\displaystyle 120=2^{3}3^{1}5^{1},} which gives the multiset {2, 2, 2, 3, 5} .