Search results
Results From The WOW.Com Content Network
Hafnium absorbs neutrons avidly and it can be used in reactor control rods. However, it is found in the same ores as zirconium, which shares the same outer electron shell configuration and thus has similar chemical properties. Their nuclear properties are profoundly different: hafnium absorbs neutrons 600 times better than zirconium.
The free neutrons are emitted with a kinetic energy of ~2 MeV each. Because more free neutrons are released from a uranium fission event than thermal neutrons are required to initiate the event, the reaction can become a self-sustaining nuclear chain reaction under controlled conditions, thus liberating a tremendous amount of energy.
This is because nitrogen has a larger absorption cross-section for neutrons than carbon or oxygen; hence, the core then becomes less reactive. As the neutron energy increases, the neutron cross section of most isotopes decreases. The boron isotope 10 B is responsible for the majority of the neutron absorption.
Some of these poisons deplete as they absorb neutrons during reactor operation, while others remain relatively constant. The capture of neutrons by short half-life fission products is known as reactor poisoning; neutron capture by long-lived or stable fission products is called reactor slagging. [2]
Control rods are a series of rods that can be quickly inserted into the reactor core to absorb neutrons and rapidly terminate the nuclear reaction. [2] They are typically composed of actinides, lanthanides, transition metals, and boron, [3] in various alloys with structural backing such as steel. In addition to being neutron absorbent, the ...
The control rods absorb neutrons without undergoing any nuclear reactions. They’re like sponges absorbing the neutrons that would be bouncing around, making more chain reactions. The control rod ...
The fastest method for adjusting levels of fission-inducing neutrons in a reactor is via movement of the control rods. Control rods are made of so-called neutron poisons and therefore absorb neutrons. When a control rod is inserted deeper into the reactor, it absorbs more neutrons than the material it displaces – often the moderator.
Activation is inherently different than contamination. Neutrons are only free in quantity in the microseconds of a nuclear weapon's explosion, in an active nuclear reactor, or in a spallation neutron source. In an atomic weapon, neutrons are generated for only between 1 and 50 microseconds, but in huge numbers.