Search results
Results From The WOW.Com Content Network
The Clausius–Clapeyron equation [8]: 509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid. [9]
The saturation vapor pressure of water increases with increasing temperature and can be determined with the Clausius–Clapeyron relation. The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure.
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
The vapor pressure of any substance increases non-linearly with temperature, often described by the Clausius–Clapeyron relation. The atmospheric pressure boiling point of a liquid (also known as the normal boiling point ) is the temperature at which the vapor pressure equals the ambient atmospheric pressure.
Antoine equation; Bejan number; Bowen ratio; Bridgman's equations; Clausius–Clapeyron relation; Departure functions; Duhem–Margules equation; Ehrenfest equations; Gibbs–Helmholtz equation; Phase rule; Kopp's law; Noro–Frenkel law of corresponding states; Onsager reciprocal relations; Stefan number; Thermodynamics; Timeline of ...
Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures: log 10 (P) = −(0.05223)a/T + b, where P is in mmHg, T is in kelvins, a = 38324, and b = 8.8017.
Thus the P° pure vapor pressures for each component are a function of temperature (T): For example, commonly for a pure liquid component, the Clausius–Clapeyron relation may be used to approximate how the vapor pressure varies as a function of temperature. This makes each of the partial pressures dependent on temperature also regardless of ...
Thus, we use more complex relations such as Maxwell relations, the Clapeyron equation, and the Mayer relation. Maxwell relations in thermodynamics are critical because they provide a means of simply measuring the change in properties of pressure, temperature, and specific volume, to determine a change in entropy. Entropy cannot be measured ...