Search results
Results From The WOW.Com Content Network
In computing, the clock multiplier (or CPU multiplier or bus/core ratio) sets the ratio of an internal CPU clock rate to the externally supplied clock. This may be implemented with phase-locked loop (PLL) frequency multiplier circuitry. A CPU with a 10x multiplier will thus see 10 internal cycles for every external clock cycle. For example, a ...
Further, a "cumulative clock rate" measure is sometimes assumed by taking the total cores and multiplying by the total clock rate (e.g. a dual-core 2.8 GHz processor running at a cumulative 5.6 GHz). There are many other factors to consider when comparing the performance of CPUs, like the width of the CPU's data bus , the latency of the memory ...
Overclocking BIOS setup on an ABIT NF7-S motherboard with an AMD Athlon XP processor. Front side bus (FSB) frequency (external clock) has been increased from 133 MHz to 148 MHz, and the CPU clock multiplier factor has been changed from 13.5 to 16.5. This corresponds to an overclocking of the FSB by 11.3 percent and of the CPU by 36 percent.
The frequency at which a processor (CPU) operates is determined by applying a clock multiplier to the front-side bus (FSB) speed in some cases. For example, a processor running at 3200 MHz might be using a 400 MHz FSB. This means there is an internal clock multiplier setting (also called bus/core ratio) of 8. That is, the CPU is set to run at 8 ...
Programmable clock generators allow the number used in the divider or multiplier to be changed, allowing any of a wide variety of output frequencies to be selected without modifying the hardware. The clock generator in a motherboard is often changed by computer enthusiasts to control the speed of a CPU , FSB , GPU or RAM .
It was the first time that the CPU core clock frequency was separated from the system bus clock frequency by using a dual clock multiplier, supporting 486DX2 chips at 40 and 50 MHz. The faster 66 MHz 486DX2-66 was released that August. [11]
IntelDX4 is a clock-tripled i486 microprocessor with 16 KB level 1 cache. [1] Intel named it DX4 (rather than DX3 ) as a consequence of litigation with Advanced Micro Devices over trademarks . The product was officially named IntelDX4, but OEMs continued using the i486 naming convention.
The final result comes from dividing the number of instructions by the number of CPU clock cycles. The number of instructions per second and floating point operations per second for a processor can be derived by multiplying the number of instructions per cycle with the clock rate (cycles per second given in Hertz) of the processor in question ...